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INTRODUCTION

The PDG value of the branching fraction for the π0 Dalitz decay is Γ(e+e−γ)
Γ(2γ)

=

(1.213 ± .030)%. It has a 2.5% uncertainty, and it is based on three measurements, the

most recent of which is 25 years old.

(1.25± .04)% Schardt 1981, π−p→ nπ0 [1]

(1.166± .047)% Samios 1961, 3071 events, π−p→ nπ0 [2]

(1.17± .15)% Budagov 1960, 27 events [3]

We find 66,432 KL → 3π0d decays in KTeV data, and normalize to KL → 3π0 (of which

we find 3,530,309) to extract B(π0→e+e−γ)
B(π0→γγ)

= (1.1539± 0.0045± 0.0152)% (preliminary). The

statistical error is 0.39% and the systematic error is 1.32%, giving a total relative uncertainty

of 1.38%.

DATA SAMPLES

The signal mode is KL → 3π0 with one π0 decaying to e+e−γ and the remaining 2 π0s

each decaying to γγ, denoted KL → 3π0d, and the normalization mode is KL → 3π0 → 6γ.

Ideally, both signal and normalization samples would come from the same trigger to reduce

systematic errors associated with relative trigger inefficiencies. However, the only trigger

that would have been suitable for this, trigger 6, requires exactly 6 clusters at level 3, while

Dalitz decays produce 7 clusters in the calorimeter. Thus, trigger 6 (with a hardware prescale

of 5, and an analysis prescale of 10) is used for KL → 3π0, the normalization mode. Trigger

14, which requires 7 or more hardware clusters, is used for KL → 3π0d. Trigger definitions

are given below.

Trigger6 = SPILL * ET NEUT * VETO NEUT * !CA * HCC GE6

Trigger14 = SPILL * 2V * DC12 * ET NEUT * VETO CHRG * !HA PION * !CA *

HCC GE7 * 1HCY

Both triggers require good spills, a minimum amount of energy in the calorimeter

(ET NEUT) and a maximum amount of energy deposited in the collar anti (CA). Trig-

ger 6 requires the neutral veto, and trigger 14 requires the charged veto. These are defined

below. Trigger 14 requires two hits in one view and one hit in the other for the VV′ banks
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(2V), hits in three of four drift chamber views (DC12), less than 3 MIPS in the hadron anti

(HA PION), and that there are one or more hits in every y view (1HCY).

VETO NEUT = !SA2 * !SA3 * !SA4 * !CIA * !REG * !HA NEUT

VETO CHRG = !SA2 * !SA3 * !SA4 * !CIA * !REG * !MU2

The neutral threshold for the hadron anti (HA NEUT) is 14 MIPS.

EVENT SELECTION AND ANALYSIS

For the normalization mode, we are looking for 3 π0s, each of which produces 2 photons.

The six clusters in the calorimeter are input to KTPAIRS to determine the best pairing of

the 15 possible pairings. (There are 6! ways to order the photons, but the order of each

pair does not matter, so divide by 2 for each pair, and the order of the 3 pairs does not

matter, so divide by 3! to get 6!
8×6

= 15.) This is done by looping over all possible pairings

and calculating the z-positions of the three pions, assuming the pion mass. The z distance

between each pion decay and the calorimeter is calculated by assuming the photons have a

small opening angle, which allows us to use:

ZCSI =

√
E1E2r212
m
π0

where E1 and E2 are the photon cluster energies in the calorimeter and r12 is the distance

between the photon clusters at the calorimeter.

For each pairing, a χ2 is formed based on the three reconstructed pion z-positions and

their weighted average. The best pairing is the one which has the smallest pairing χ2. The

distance between the calorimeter and the reconstructed kaon vertex position is then the

average z associated with the best pairing. To get the distance from the target to the kaon

vertex (since the target is the origin in our reference frame), we subtract the vertex distance

to the CSI (ZCSI) from the mean depth of the photon shower in the CSI. This reconstructed

kaon vertex position allows us to construct the four-momenta of the six photons, from which

we reconstruct the 3π0 invariant mass.

For the signal mode, we require 7 hardware clusters in the CSI and 2 reconstructed

tracks. After determining which clusters correspond to the 2 tracks, the remaining 5 ’neutral’

clusters are input to KTPAIRS to determine the best pairing of those 5 clusters into 2 π0s.

(Again, there are 15 possible pairings, since there are now 5! ways to order the photons,
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but the order within the 2 pairs does not matter nor does the order of the 2 pairs, so we

have 5!
4×2

= 15.) The z-distances from the calorimeter are calculated for each pairing, and

a pairing χ2 is formed for each combination using the two pion z-distances. The pairing

which minimizes this χ2 is chosen, and the corresponding z-position is the reconstructed

kaon vertex position, just as in the normalization mode. The neutral cluster which does not

belong to either pair is tagged as the photon coming from the π0d decay.

This Dalitz photon is combined with the 2 tracks to form the π0d. The 4-momenta of the

tracks combined with the 4-momentum of the Dalitz photon give the reconstructed π0d mass.

The vertex of the 2 tracks gives another measure of the reconstructed vertex position. Since

the tracks generally have a small opening angle and are therefore not very well-separated

in the drift chambers, the uncertainty on the track vertex z-position is large compared to

the uncertainty on the reconstructed kaon z based on the neutral clusters. The 3π0d mass

is reconstructed using the reconstructed 4-momenta of the 2 tracks and the 5 photons; the

track 4-momenta use the reconstructed z from the tracks, while the photon 4-momenta use

the neutral z.

After reconstruction, the final data samples are selected using the criteria listed in Table I,

and described below. For quantities that exist in both signal and normalization modes,

selection requirements are as similar as possible so that uncertainties associated with making

the cuts largely cancel in the ratio of the two modes. This is confirmed by varying these cuts

in both modes and seeing that the ratio of branching ratios does not change significantly.

For requirements on quantities appearing only in the charged (signal) mode, we vary the

cut to see that the Monte Carlo (MC) matches the data well in the region of the cut.

The reconstructed vertex position is required to be between 123 and 158 meters, so that

it is downstream of the mask (at 122 m) and upstream of the vacuum window (at 158.9 m).

The reconstructed kaon energy must be between 40 and 160 GeV. The reconstructed 3π0

and 3π0d masses are required to be within about 7 MeV/c
2 of the PDG value of the kaon mass,

497.6 MeV/c2. Both the pairing χ2 cut and, in the Dalitz case, the cut on the reconstructed

e+e−γ mass (within 20 MeV/c2 of the π0d mass), are designed to reduce cases of mispairing,

since mispairing of the photons causes large pairing χ2s and/or misreconstruction of the π0

mass. The shape χ2 is a measure of how close a cluster’s transverse energy profile is to the

expected transverse energy distribution for a photon shower. Thus, requiring the shape χ2

to be less than 100 helps discriminate between clusters that ’look like’ photons, which we
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Quantity Selection Criteria

Both Modes Cut Window

3π0, 3π0d Mass ( GeV/c
2) (0.490, 0.505)

Reconstructed vertex position (m) (123.0, 158.0)

Reconstructed Kaon Energy ( GeV) (40.0, 160.)

Pairing χ2 (0.0, 75.0)

Shape χ2 (0.0, 100.0)

Min. Cluster Energy ( GeV) (3.0, ∞)

Min. Cluster Distance (m) (0.075, ∞)

Ring Number (cm2) (0.0, 110.0)

Max. Seed Ring (0.0, 19.0)

Min. Small Ring (4.0, ∞)

***Dalitz Only*** Cut Window

e+e−γ Mass ( GeV/c2) (0.115, 0.155)

Min. Track Momentum ( GeV/c) (4.0, ∞)

Track E/P (0.9, ∞)

Vertex χ2 (0.0, 100.0)

Brem-γ Dist at CSI (m) (0.01,∞)

Cell Separation (cells) (3.0, ∞)

TABLE I: Selection criteria for signal and normalization mode.

want, and hadronic clusters, which we don’t. Each cluster must be greater than 3 GeV in

energy, and each track in the signal mode must be greater than 4 GeV/c in momentum.

Each pair of clusters must be separated by at least 7.5 cm at the calorimeter (this is the

minimum cluster distance cut in Table I) to reduce the amount of overlap between clusters.

I reject events in which any of the clusters are centered on a CSI block at the outer edge

of the calorimeter or directly around either of the two beam holes since a large fraction

of the energy from those clusters would not be contained in the calorimeter. These are,

respectively, the maximum seed ring and minimum small ring cuts in Table I. Additionally,

the reconstructed center of energy has to be within the area of one of the beams at the CSI.
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(This is the ring number cut variable in Table I, which gives the area in cm2 of the smallest

square that includes the center of energy and that is centered on the nearest beam.)

For Dalitz mode, there were additional selection criteria having to do with tracking. Both

tracks were required to have energy to momentum ratios (E
P
) greater than 0.9, since we have

calibrated such that the E
P
of electrons should be centered at 1. The vertex χ2 is calculated

from the vertex position in x and y with the hypothesis that the tracks came from the same

z position. Cutting on the vertex χ2 throws out misreconstructed tracks. To reduce the

number of events in which one of the electrons emits a bremsstrahlung photon as it bends

in the magnet, we require that none of the seven clusters used to reconstruct 3π0d be found

within 1 cm of the place on the CSI pointed to by either upstream track segment. The

final selection criteria is the cell separation requirement. This cut requires that the tracks

be separated by more than 3 cells at the first and second drift chambers. Each cell is 6.35

mm, so the distance requirement is around 2 cm. Although this cut throws away ∼ 2
3
of the

Dalitz events that are left after all other cuts are made, it is necessary because the tracking

efficiency is not well-understood for close tracks. For well-separated tracks, we can take

advantage of tracking efficiency studies that have been done for the recent Vus analysis [4].

Although these studies were done on 97 π+π−π0 data, we have redone them for the 99

sample. We have also demonstrated that the tracking loss is mainly due to accidentals in 99

(due to the higher beam intensity), and thus, largely affects pion and electron tracks in the

same fashion. Details of these tracking inefficiency studies are in the Systematics section of

this paper. Finally, all events are also required to pass the level one trigger verification for

their respective triggers.

Reconstructed mass plots in Figure 1 and 2 show the signal in the Dalitz and 3π0 modes,

respectively. In each plot, all cuts have been applied except the cut on the quantity plotted.

DATA SAMPLE INTEGRITY

Since I am using two different triggers for the analysis, I need to be sure that I am using

the same runs and spills for both signal and normalization modes. Some runs and spills

were lost for one mode during the split; others were lost during tape migration. These runs

and spills were removed from both samples.

I performed a check on the remaining samples by comparing the run-by-run ratios of 3π0

6



10

10 2

10 3

10 4

0.48 0.485 0.49 0.495 0.5 0.505 0.51 0.515

χ2/dof = 164.6 / 70

10

10 2

10 3

10 4

0.115 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155

χ2/dof = 87.4 / 80

FIG. 1: The top plot is the reconstructed 3π0d mass and the bottom plot is the reconstructed e
+e−γ

mass in the signal mode. The black dots are data, and the red histogram is MC. All cuts have

been applied except the cut on the quantity plotted.
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FIG. 2: The reconstructed 3π0 mass in the normalization mode. The black dots are data, and the

red histogram is MC. All cuts have been applied except the cut on the reconstructed 3π0 mass.

events to Dalitz events to the average of this ratio over all runs. I looked for individual
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FIG. 3: The sigma distribution, fit to a gaussian, for the ratio of 3π0 events to Dalitz events in

each DAQ plane in each run, relative to the average ratio over all included runs.

runs with ratios that were more than four sigma from the average. Eight outlying runs were

identified. Two of these runs were found to have different spill distributions; I modified the

analysis to include only spill ranges that are present in both modes. The other six runs were

found to have 3π0 to Dalitz event ratios that were approximately two-thirds the average

ratio. Further investigation showed that the 3π0 sample was missing one of the three DAQ

planes in each of these six runs. This was due to problems during the split. These runs were

removed from both modes.

After removing these runs and spills, I re-evaluated the run ratios, this time comparing

the ratio in each DAQ plane (within each run) to the overall ratio. The distribution of the

number of sigma away from average for each plane’s ratio is shown in Figure 3. Since the

sigma distribution is gaussian centered at 0 with a width of ∼ 1, this plot suggests that we

have eliminated all runs in which problems occurred during data-taking, tape splits, and

tape migration.
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MONTE CARLO

We use Monte Carlo version 6.03 (the same as was used for the Vus analysis [4]) to generate

signal and normalization mode events. Prior to this analysis, the 832 MC initialization code

did not initialize variables associated with the the Dalitz decay (such as ’pi0 slope param,’

which is the form factor parameter for the Dalitz decay), so the relevant portion of the

799 MC initialization routine were copied into the 832 routine. The photon unsmearing

routine developed for version 7.00 was imported and is used to correct the resolution of the

reconstructed e+e−γ mass. The radiative corrections routines developed by the University

of Colorado group are used in generating the π0 → e+e−γ decay.

NUMBER OF EVENTS, ACCEPTANCES

Table II shows the number of events in data and MC for both 3π0 and Dalitz, and

the corresponding acceptances with errors. The first two lines give the overall numbers,

and below that, the events are broken into intensity ranges. The medium intensity sample

includes spills which have SEM values of 3.0 × 1012 to 5.5 × 1012, and the high intensity

sample includes spills which have SEM values greater than 5.5 × 1012. In particular, this

means that run-ranges are not used as intensity ranges. Note that the sum of events in

the medium and high intensity samples does not equal the total number of events; this is

because some events are in the low intensity range (SEM less than 3.0× 1012) which is not

considered separately here due to low statistics.

SYSTEMATICS

Table III is a summary of the sources of systematic errors for this analysis and an estimate

for each one. For each line in the table, there is a subsection below giving more details about

the source of the error and about how the estimate of the uncertainty was obtained.

Radiative Corrections

I generated signal Monte Carlo with no radiative corrections to compare to nominal MC.

The acceptance increases by (5.26 ± 0.27)% when radiative corrections are not included,
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Mode Data Events MC Events MC Gen Acceptance (10−2) Error (10−2)

3π0 3530309 25331492 669341287 3.78454 0.00074

Dalitz 66432 273338 658870528 0.04149 0.00008

3π0 medium 1613157 11530307 271272384 4.2505 0.0012

Dalitz medium 30843 125500 267060096 0.04699 0.00013

3π0 high 1868668 13457397 387318016 3.4745 0.0009

Dalitz high 34565 144429 381247040 0.03788 0.00010

TABLE II: Number of events in data and Monte Carlo, and acceptances (with errors) for both

modes, overall and within the medium and high intensity ranges.

Source of Systematic Error Level of Uncertainty

Radiative Corrections 1.02%

Tracking Inefficiency 0.68%

Detector Material 0.37%

Accidentals 0.1%

Trigger Inefficiency 0.14%

Trigger 6 pre-scale < 0.1%

Form Factor 0.07%

Photon Inefficiency 0.01%

Background < 0.1%

Cut Variations < 0.1%

Monte Carlo Statistics 0.19%

Total Systematic Error 1.32%

TABLE III: Sources of systematic errors with an estimate for each uncertainty.

and the reconstructed e+e−γ mass distribution is not well-modelled. Figure 4 shows that,

without radiative corrections, the MC does not match the low side of the mass distribution.

The width of the reconstructed e+e−γ distribution in the nominal MC matches the data

quite well. The width of the mass distribution in MC with no radiative corrections is 10.33

sigma from the width of the data mass distribution. See Table IV. A more than two-sigma
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FIG. 4: The left plots show the data to nominal Monte Carlo overlay and ratio for the reconstructed

e+e−γ mass. The right plots are the overlay and ratio for the reconstructed e+e−γ mass in data

and Monte Carlo with no radiative corrections. Black dots are data; the red histogram is MC.

disagreement in the width between data and MC with no radiative corrections would be

significant, so we conservatively assign a systematic error due to radiative corrections of

5.26%
10.33/2

, or 1.02%.

The distribution of the number of software clusters provides a cross-check on the system-

atic error due to radiative corrections. The number of software clusters is affected by the

real radiated photons that are generated when radiative corrections are included in the MC.

Since radiative corrections also include virtual corrections, which do not affect the number of

software clusters, the distribution of the number of software clusters cannot be used directly

to determine a systematic error.

Figure 5 shows that overlaying this distribution from nominal Monte Carlo with data gives

a χ2 of 12.8/13; using MC with no radiative corrections gives a χ2 of 538/13. We create a
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Sample Width of rec. Error χ2/dof of Sigma diff.

e+e−γ mass overlay with data from data

Data 0.0015382 5.8× 10−6 - -

Nominal MC 0.0015443 3.0× 10−6 87.4/80 0.94

MC no rad. corr. 0.0014716 2.7× 10−6 441.9/80 -10.33

TABLE IV: The width of the gaussian fit to the reconstructed e+e−γ mass distribution in data,

nominal Monte Carlo, and Monte Carlo with no radiative corrections.
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FIG. 5: The left plots show the data to nominal Monte Carlo overlay and ratio for the distribution

of the number of software clusters. The right plots show the overlay and ratio for data to MC with

no radiative corrections. Black dots are data and the red histogram is MC.

mixture of the two Monte Carlos (with and without radiative corrections) by combining a

fraction, f, of Monte Carlo with no radiative corrections and (1-f) of nominal Monte Carlo.

By varying f, we determine at what level we can detect the presence of the Monte Carlo with
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no radiative corrections by monitoring the changing χ2 to see when the combined MC no

longer matches the data. When I combine 86% nominal MC with 14% MC with no radiative

corrections, the χ2 is 31.3/13. This is equivalent to more than a three sigma difference. If real

radiated photons accounted for the entire 5.26% acceptance change, I would conclude that we

are sensitive to changes in the acceptance due to radiative corrections at a ∼ 14% level. This

would give a systematic error associated with radiative corrections of 0.14×5.259% = 0.75%.

Since virtual corrections also affect the acceptance, but not the number of software clusters,

we assign a systematic error due to radiative corrections of 1.02% based on the width of the

reconstructed e+e−γ distribution, as described earlier in this section.

Tracking Inefficiency

Tracking inefficiency was studied for the Vus analysis [4] using π
+π−π0 events for 1997.

I repeated these studies using 1999 data, separately for medium and high intensity, since

tracking efficiency depends on intensity. π+π−π0s were reconstructed from random accepts

in trigger 4, and a large MC sample of π+π−π0s was generated for comparison with these

data events.

For the single-track inefficiency, η1, the π
0 → γγ is reconstructed and two hadronic clus-

ters (corresponding to the π+ and π−) are required in the calorimeter. One of the hadronic

clusters must match a fully-reconstructed track. There are then two possible kinematic

solutions for the missing track. The position of the second hadronic cluster discriminates

between these two solutions. The single track inefficiency is measured in data and in Monte

Carlo, and is multiplied by 2 since we have two tracks. The MC does not fully model the

inefficiency observed in data, so we need a correction equal to the difference between the

data and MC inefficiencies. (This correction will lower the acceptance, since it increases the

MC track inefficiency to match the data inefficiency.)

Since correlated hit losses within a drift chamber can result in no reconstructed tracks,

a separate study analyzed this two-track loss, η0. Again, we start with a reconstructed

π0 → γγ and two hadronic clusters in the calorimeter. We look for events where no tracks

were fully reconstructed, but where there are two track segments in either the upstream pair

of drift chambers or the downstream pair. Finding two track segments in one pair of drift

chambers indicates that the tracks were not reconstructed because they were both lost in
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Tracking Inefficiency Tracking Inefficiency

Medium Intensity High Intensity

Data

2η1 3.48% 4.90%

η0 0.19% 0.21%

Total 3.67% 5.11%

Monte Carlo

2η1 2.97% 4.31%

η0 0.05% 0.09%

Total 3.02% 4.40%

Correction 0.65% 0.72%

MC no accidentals

2η1 0.41% 0.41%

η0 0.00% 0.00%

Total 0.41% 0.41%

TABLE V: Tracking inefficiencies in π+π−π0 data and Monte Carlo, for both medium and high

intensity. The correction applied to the acceptance is the difference between the total data inef-

ficiency and the total MC inefficiency. The bottom section of the table gives the inefficiencies for

MC events in which no accidentals were included.

the other pair of drift chambers. The two-track loss is measured in both data and MC. The

difference in these measurements is added to the difference from the single-track inefficiency,

and this is the total correction to the acceptance due to tracking inefficiency. Note that the

total track inefficiency for events with two tracks is then 2η1 + η0.

Table V shows the inefficiencies in data and Monte Carlo in the two intensity samples.

The statistical errors associated with the inefficiencies are at the few percent level. Since the

medium and high intensity samples are roughly equal in size, the overall tracking correction

is approximately the average of the corrections in the two samples (0.68%). This entire

correction is taken as a systematic error.

The remaining aspect of the tracking inefficiency is to justify that the studies done with
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π+π−π0s are also valid for the electron tracks that occur in the Dalitz mode. It is suspected

that most of the track loss in 1999 is due to accidentals. This is verified by rerunning the MC

portion of the tracking studies without accidentals; these results are shown in the bottom

section of Table V. The tracking inefficiencies in MC with no accidentals are much smaller

and are not intensity-dependent. A large fraction of the inefficiency (∼ 85% to 90%) comes

from accidentals. For more on accidentals, see the section below.

Detector Material

Turning off bremsstrahlung in the Dalitz Monte Carlo increases the acceptance by (3.67±

0.33)%. Based on previous studies (for the Vus analysis [4]), the Monte Carlo models the

detector material at the 10% level, so we assign a systematic error of 0.37% for this.

Accidentals

To study the effect of accidentals, we generate MC with no accidental overlays. The

change in acceptance is large in both modes; it increases by (35.9± 0.37)% in Dalitz mode

and (31.7 ± 0.06)% in 3π0 mode. Because we are taking the ratio, most of the change in

acceptance cancels. The change in the ratio of branching ratios due to these changes in

acceptance is 1.317
1.359

− 1 = −0.0309; that is, the ratio of branching ratios decreases by 3.09%

if accidentals are not included in the MC.

Since this change in the ratio of branching ratios is mainly due to the presence of tracks

in the signal mode, we can use the drift chamber sum-of-distances (SOD) distributions

for the tracks to measure our sensitivity to changes in the acceptance due to accidentals.

Figure 6 shows the SOD distribution in data, nominal MC, and MC with no accidentals.

The overlay between data and MC without accidentals shows extremely poor agreement.

The agreement between data and nominal MC is much better, but it is significantly less-

than-perfect. Because the χ2 for data to nominal MC is rather large, it cannot be used in

the MC mixing technique like it was for the systematic error due to radiative corrections.

However, since accidentals contribute almost entirely to the low SODs, we can use the

fraction of events in the SOD distribution below -0.2 mm in place of the χ2. This quantity

is well-modelled in nominal MC; in MC, this fraction is within one sigma of the fraction in
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FIG. 6: Data to Monte Carlo overlays of drift chamber sum-of-distance (SOD) distributions for

tracks in DC1X. The top plot is nominal MC and the bottom plot is MC without accidentals.

The black dots are data and the red histogram is MC. Deviation between SOD and cell spacing is

shown, so zero deviation means SOD=6.35mm, and negative deviations are low SODs.

data. The fraction of low SOD events in MC with no accidentals differs from the fraction in

data by 68 sigma; see Table VI. We create a mixture of MC with and without accidentals

and monitor the change in this low-SOD fraction to see how much MC with no accidentals

must be present to produce a significant (∼ 3 sigma) difference in this fraction between

the mixed MC and data. 2.5% MC with no accidental overlays is needed to reach this

threshold. See Table VI and Figure 7. This means that we are sensitive to changes in the

ratio of branching ratios (due to accidentals) greater than 3.09% × 0.025 = 0.08%, so the

systematic error associated with accidentals is 0.08%. This is a measure of our sensitivity

to accidentals in the charged part of the signal mode.

Because we also have one more photon in the normalization mode than in the signal

16



0
2000
4000
6000
8000

10000
12000
14000
16000
18000

-0.1 -0.075 -0.05 -0.025 0 0.025 0.05 0.075 0.1

x 10
-2

χ2/dof = 207.4 / 20

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

-0.1 -0.075 -0.05 -0.025 0 0.025 0.05 0.075 0.1

x 10
-2

FIG. 7: Data to MC overlay of drift chamber sum-of-distance (SOD) distributions for tracks in

DC1X. The MC is 97.5% nominal and 2.5% without accidentals. The black dots are data and the

red histogram is MC. Deviation between SOD and cell spacing is shown, so zero deviation means

SOD=6.35mm, and negative deviations are low SODs.

mode, we are also sensitive to accidentals in the neutral parts of the two decays. Comparing

the distribution of the number of software clusters for 3π0 MC events with and without

accidentals gives a measure of this part of our sensitivity to accidentals. Using 98% nominal

MC with 2% MC with no accidentals gives a very significant mismatch with data in the

distribution of the number of software clusters. For the neutral parts of the decays, we

are sensitive to changes in the ratio of branching ratios (due to accidentals) greater than

3.09%× 0.02 = 0.06%. Combining this systematic error with the systematic error from our

sensitivity to accidentals in the charged part of the signal mode gives a total systematic

error due to accidentals of 0.1%.

Trigger Inefficiency

Since the two modes come from two different triggers, we need to measure how well we

know the relative trigger efficiency. The 3π0s come from trigger 6, and the Dalitz events

17



Sample Fraction Dev Sod < −.2mm Error Sigma Diff From Data

Data 0.1169 0.0012 -

Nominal MC 0.1156 0.0006 0.90

MC no accid. 0.0282 0.0004 67.99

MC: 97.5% nom

and 2.5% no accid. 0.1126 0.0006 3.06

TABLE VI: The fraction of events (and the error) whose deviation of SOD from the nominal

value (6.35 mm) is less than -.2 mm. The last column gives the difference in this low-sod fraction

between data and MC for nominal MC, MC with no accidentals, and a combination of the two

Monte Carlos.

come from trigger 14. To determine the level of trigger inefficiency, I take random accepts

from trigger 6 and run them through my Dalitz analysis. The fraction of the events that

reconstruct as Dalitz decays but do not show up in trigger 14 is the rate of trigger inefficiency.

I find 207 random accepts that pass all my Dalitz cuts, and all 207 are in trigger 14. I find

716 events that pass all cuts except the cell separation cut, and 1 of these is not in trigger

14. This inefficiency of 1
716
= 0.0014 is applied to the Dalitz acceptance as a correction, and

the entire correction of 0.14% is taken as a systematic error.

Trigger 6 Prescale

Based on past trigger studies, we estimate that this systematic error will be less than

0.1%. For the final result, we will reconstruct 3π0s in trigger 5 and measure the rate of

events that pass all cuts but are not in trigger 6.

Form Factor

The amplitude for the π0d decay, π
0 → e+e−γ, contains a form factor, F(x), at the π0γγ

vertex (where x = (mee/mπ0)2). The linear expansion of F(x) is 1+ax; the PDG value for

the parameter a is 0.032± 0.004. I generated MC with the nominal value of this parameter,

as well as with a value of 0.0 (eight sigma below nominal) and a value of 0.064 (eight sigma

above nominal). Changing the form factor parameter up or down by eight sigma has only a

18



small affect on the acceptance; it differs from nominal by approximately (0.6±0.3)%, giving

a systematic error of 0.07%.

Photon Inefficiency

In the Vus analysis [4], the effect of the photon cluster shape requirement (shape χ
2)

was studied by removing this cut in the Γ000/ΓKe3 analysis. Removing the cut resulted in a

change of 0.05% in the ratio, which was taken as a systematic uncertainty. In this analysis,

there is only a one-photon difference between the numerator and denominator of the ratio

of branching ratios (five photons in the signal mode and six photons in the normalization

mode). The uncertainty in
B(KL→3π0

d)

B(KL→3π0)
is then 1/6 of the one found in Vus, or, ∼0.01%.

Background

KL → 3π0, with one photon converting to an e+e− pair at the vacuum window is the main

source of background. To study this, 3π0 Monte Carlo events were generated in trigger 14

and reconstructed with the Dalitz analysis. Figure 8 shows the distribution of reconstructed

vertex position for the conversion events, zoomed in to the region around the vacuum window

at 159 meters.

We generated half as many 3π0s for this background study as we did for the nominal 3π0

analysis; since the nominal analysis only kept 1
50
events due to the trigger 6 prescale of 5

along with a prescale of ten in my crunch, we generated a factor of 25 more 3π0 events for

the background study. (This is because we need to know, not only how many background

events this sample produced, but also how many 3π0 events it would have produced had it

gone through trigger 6 and the nominal 3π0 analysis. By generating 25× as many 3π0s for

the background study, this latter number is just half the number of 3π0s we reconstruct in

our nominal 3π0 Monte Carlo (25331492/2 = 12665746 events), since the underlying samples

sizes differ by a factor of two.)

Only seven background events remain after all cuts. Since we reconstructed 3,530,309

3π0 events in data, and 12,665,746 in MC, the number of background events expected in

data is 7× 3530309
12665746

= 2.0 events. This represents 2.0
66432

= 3× 10−5, or a 0.003% background,

and we take this as a systematic error.
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FIG. 8: The reconstructed vertex position of events with a photon conversion, focusing on the

region near the vacuum window (at 159 m). The plots on the left show the reconstructed vertex

position based on the neutral photons that formed the 2π0s. The plots on the right are the

reconstructed vertex position based on the vertex of the two tracks. The top plot is before cuts,

the middle plot is after all cuts except the cell separation requirement, and the bottom plot is after

all cuts. In the top-right and middle-right plots, the spike at the vacuum window is visible. Note

that seven events remain after all cuts, although none of them are near the vacuum window.

Cut Variations

Plotting data to Monte Carlo overlays for each variable shows that the simulation models

the physics very well. Figure 9 shows the reconstructed vertex position distributions in both

Dalitz and 3π0 modes. There is no significant slope in the ratio of data to Monte Carlo z-

positions in either mode. Figure 10 shows the cell separation distribution for the two tracks
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FIG. 9: The reconstructed kaon z-vertex for both modes, after all cuts except the z cut. The black

dots are data and the red histogram is Monte Carlo.

in Dalitz mode. The left plot show the distribution after all cuts except the cell separation

cut; the right plot shows the distribution after making the additional requirement that the

cell separation be greater than 3 (cells). Most of the disagreement is in the first bin, at a

cell separation of zero. It is not surprising that it is difficult to simulate cases in which the

two tracks are so close together as to be within the same cell in the drift chamber.

Systematics associated with cuts on variables are studied by varying each cut and seeing

what happens to the B(π0→e+e−γ)
B(π0→γγ)

. For variables on which a requirement exists in both modes,

a large fraction of any data-Monte Carlo disagreements should cancel in the ratio, and we

find this to be the case when cuts are varied. For variables that only exist in Dalitz mode, no

such cancellation will occur, so systematic errors arise from any disagreement between data

and Monte Carlo. The cuts on these Dalitz-only quantities are varied, and no significant

changes are observed in B(π0→e+e−γ)
B(π0→γγ)

. Based on this, we estimate that our sensitivity to

changes in the acceptance due to the selection criteria is small, < 0.1%.
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FIG. 10: The reconstructed cell separation for the two tracks in Dalitz mode. The left plot is after

all cuts except the cell separation cut, and the right is after all cuts. Most of the disagreement

between data and Monte Carlo is in the first bin, at a cell separation of 0.

Monte Carlo Statistics

The error on the ratio of acceptances, which is 0.19%, is taken as the error from MC

statistics. This number can be reduced for the final result by generating a larger Monte

Carlo sample for Dalitz mode (since this mode currently limits the error on the ratio of

acceptances).

CROSS-CHECKS

We have several ways to cross-check our result, some of which have been done and some

of which are in progress. These include calculating the ratio of branching ratios within each

intensity range, for each value of the cell separation, for each run, for inbends and outbends,
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Sample B(π0 → e+e−γ)/ Stat. Error

B(π0 → γγ) (Data and MC)

Medium Intensity 1.1621 0.0074

High Intensity 1.1408 0.0069

Weighted Average 1.1506 0.0050

Overall 1.1539 0.0050

TABLE VII: The intensity dependence of the ratio of branching ratios. Using (data and MC)

statistical errors only, we compute the weighted average of the results in the two intensity samples.

The overall result is included in the bottom line for comparison.

and for the two magnet polarities.

Intensity Dependence

The ratio of branching ratios, B(π
0→e+e−γ)

B(π0→γγ)
is calculated independently in the medium and

high intensity samples. The correction for the tracking inefficiency is applied separately to

the two samples; the medium intensity correction to the Dalitz acceptance is 0.9935 and the

high intensity correction is 0.9928. The correction due to the trigger inefficiency is the same

for both samples. The results are shown in Table VII.
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FIG. 11: The points are the ratio of branching ratios in each intensity sample, and the line is the

weighted average.
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Using the weighted average and the errors, we compute χ2 for one degree of freedom of

4.40. This χ2 indicates a 3.6% probability that the results from the two intensity samples

are consistent with each other within statistical errors. This fit is shown in Figure 11.

Cell Separation Dependence

Ratio of BR vs Cell Sep Bin
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FIG. 12: The ratio of branching ratios vs cell separation. The Dalitz events (both data and

reconstructed MC events) that contribute to the answer in each bin are the events which have a

minimum cell separation equal to the bin number. For example, the events in the cell separation

= 0 bin all have a minimum cell separation of exactly 0.

Because tracks with a small opening angle are not well-simulated in the Monte Carlo, we

require that the tracks be more than 3 cells apart in the first two drift chambers. We now

verify that the ratio of branching ratios is not changing significantly in the vicinity of our

cut. The number of reconstructed Dalitz events in each bin of cell separation in both data

and MC are used to compute the ratio of branching ratios for each value of cell separation.

(We use the overall number of reconstructed 3π0 events in data and MC, as well as the

overall number of generated events in both modes since we do not currently have a measure

of the number of generated events for each value of the cell separation.)
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Figure 12 shows the ratio of branching ratios as a function of cell separation. Tracks with

a minimum cell separation of zero are very poorly simulated; beyond zero cell separation,

the ratio of branching ratios is fairly flat. Fitting the points to a line using all the bins gives

a χ2/dof of 64.4/38; omitting the zero cell separation bin significantly improves the χ2/dof

to 53.7/37.

Run Dependence

Ratio vs Run
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FIG. 13: The ratio of branching ratios vs run, for ’medium-intensity’ runs, which are defined as

runs 13670 through 14104. Note that this does not exactly correspond to the medium intensity

sample, since events for the medium intensity sample are selected on a spill-by-spill basis. Only

runs which have a non-zero number of events in them are included.

Recall that, before making any cuts, we checked the data sample integrity by looking at

the ratio of the number of 3π0 events to the number of Dalitz events in each DAQ plane in

each run, and comparing that ratio to the ratio over all runs. We used the statistical error

within each run to determine, for each individual ratio, the number of sigma away from the

overall average ratio.

A similar check is performed after the analysis for events passing all cuts. For each run
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FIG. 14: The ratio of branching ratios vs run, for ’high-intensity’ runs, which are defined as runs

14105 through 14523. Note that this does not exactly correspond to the high intensity sample,

since events for the high intensity sample are selected on a spill-by-spill basis. Only runs which

have a non-zero number of events in them are included.

that has a non-zero number of events, we compute the ratio ( ndaldata
n3p0data

∗ n3p0mcrec
ndalmcrec

). We compute

this number (with an error based on data and MC statistics) in lieu of the ratio of branching

ratios in each run because currently there is no measure of the number of generated events

in our energy and z ranges on a run-by-run basis. This number is also computed across all

runs for comparison.

Due to the intensity-dependence of the above ratio, it is appropriate to separate out

the two intensities. During data-taking, the intensity was increased at run 14105 for high

intensity running through the end of the 99 runs. We break the run range into a ’medium

intensity’ run range (runs 13670-14104) and a ’high intensity’ run range (runs 14105-14523).

(Note that this is not how the previously described medium and high intensity samples are

selected; events are put into one of those samples based on a spill-by-spill SEM value.) This

is imperfect since some runs in the former range were high intensity tests, and some spills

in one intensity run range have an actual intensity that would put them in the other range.

The plots in Figure 13 and Figure 14 show the ratios for each run in the. The fits agree at
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around the two-sigma level.

Inbends vs Outbends

This study is in progress.

Magnet Polarity

This study is in progress.
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